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Abstract The particle filter‐based data assimilation method is an effective tool to adjust model states
based on observations. In this study, we proposed a modified particle filter‐based data assimilation method
with a local weighting procedure (MPFDA‐LW) for a high‐precision two‐dimensional hydrodynamic
model (HydroM2D) in dam‐break flood simulation. Moreover, a particle filter‐based data assimilation
method with a global weighting procedure (PFDA‐GW) for the HydroM2Dmodel was also investigated. The
MPFDA‐LW and the PFDA‐GW for the HydroM2D model, respectively, adopted spatially nonuniform and
uniform Manning's roughness coefficients. The MPFDA‐LW considering spatial‐temporal variability of
Manning's roughness coefficient could significantly improve the performances of the HydroM2D model in
simulating water stages at all gauges simultaneously, whereas the PFDA‐GW considering temporal
variability of Manning's roughness coefficient could only slightly improve the performances of the
HydroM2Dmodel in simulatingwater stages at a few gauges. TheMPFDA‐LW ismore suitable for improving
the performance of 2‐D hydrodynamic models in flood inundation simulation than the PFDA‐GW.

1. Introduction

To date, a large number of reservoirs have been built on natural rivers for the purposes of flood control,
power generation, irrigation, water supply, navigation, tourism, and fishery (S. Zhang et al., 2017).
Although the safety of reservoirs has been continuously improved, dam‐break problems occur from time
to time due to overcrowding, damage to dam foundations, earthquakes, and human factors (Marsooli &
Wu, 2014). Rapid flows resulting from dam‐break may cause devastating damage to the environment and
huge losses to life and property (Penna et al., 2013). The accurate simulation of the characteristics of water
flow such as water stage, discharge, arrival time, and duration during dam‐break flood inundation is
important for dam‐break risk prediction and disaster assessment (Mao et al., 2016).

Hydrodynamic models are effective tools to simulate water flows in natural and artificial water systems and
have been widely used in real‐time flood forecasting (Xu et al., 2017), dam‐break flow simulation (Ye &
Zhao, 2017), and sediment transport and water quality prediction (Camacho et al., 2015; Coraci et al.,
2007). Water stages and discharges of dam‐break flood often experience drastic changes within a short
period (Aureli et al., 2000), so the hydrodynamic model with a high performance is required for accurately
simulating dam‐break flood inundation. The performances of hydrodynamic models depend on the
precision of model parameters (e.g., Manning's roughness coefficient), model inputs (e.g., initial and
boundary conditions such as inflow hydrograph and river‐bed geometry), and model structures (e.g.,
governing equations and numerical computation method; Teng et al., 2017). Tiny errors in model
parameters (Warmink et al., 2010), model inputs (Rueda et al., 2009), and model structures (Sehnert et al.,
2009) may result in huge output errors. The uncertainties associated with model parameters, inputs, and
model structures jointly result in the output uncertainty of hydrodynamic models.

The data assimilation approach can reduce the uncertainty of hydrodynamic model outputs through
integrating observations and have been widely concerned (Giustarini et al., 2011; J. Neal et al., 2009; Qi
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et al., 2014). The Ensemble Kalman Filter (EnKF) and its variants are common methods integrating obser-
vations with hydrodynamic models (Biancamaria et al., 2011; K. Kim et al., 2014; Schneider et al., 2018). The
EnKF has a significant assumption that the prior distribution of model states is a multivariate Gaussian dis-
tribution. However, the assumption is generally invalid in nonlinear hydrodynamic models (Pasetto et al.,
2012). The particle filter (PF) can relax the assumption (Moradkhani et al., 2005) and has been applied in
hydrodynamic model assimilations (Giustarini et al., 2011; Y. Kim et al., 2013; Matgen et al., 2010; Xu
et al., 2017).

PF‐based data assimilation methods for hydrodynamic models involve two typical particle weighting proce-
dures, namely, global weighting procedure and local weighting procedure (Giustarini et al., 2011). The
PFDA‐GW can obtain the global optimal estimation of water stages at all cross sections (Giustarini et al.,
2011), but it is difficult to obtain the optimal estimation at each cross section with the PFDA‐GWdue to local
systematic errors (Xu et al., 2017). On the contrary, the PFDA‐LW can obtain the optimal estimation at each
cross section and is more suitable for assimilating observations with a high accuracy into a hydrodynamic
model that cannot be well calibrated (Giustarini et al., 2011).

Manning's roughness coefficient is a comprehensive coefficient indicating the resistance of water flow
caused by underlying surface. It significantly affects the performance of hydrodynamic model in simulating
and predicting water stages and discharge of flood inundation (Camacho et al., 2015; Chávarri et al., 2013;
Thompson et al., 2008). Manning's roughness coefficients in hydrodynamic models are related to flow con-
ditions, geography, and vegetation cover at cross sections or grid cells (Xu et al., 2017). Due to the longitu-
dinal and transverse variations of the physical characteristics of a channel and the unsteady dam‐break
flood flow, both spatial and temporal variations of the Manning's roughness coefficients in the hydrody-
namic model should be considered (Xu et al., 2017).

The study aims to develop a modified particle filter‐based data assimilation method with a local weighting
procedure (MPFDA‐LW) for a 2‐D hydrodynamic model (HydroM2D) considering the temporal‐spatial
variability of Manning's roughness coefficient. In the study, we explored the performance of the MPFDA‐
LW for the HydroM2D model in simulating and predicting dam‐break flood inundation with the physical
model of Toce River. In addition, the performance of the PFDA‐GW was investigated. The remaining part
of the paper is arranged as follows. The MPFDA‐LW for the HydroM2D and validation case are introduced
in section 2. Section 3 demonstrates the advantages of the MPFDA‐LW for 2‐D hydrodynamic models and
discusses the potential of the MPFDA‐LW for hydrodynamic models in flood prediction. Brief conclusions
are finally drawn in section 4.

2. Materials and Methods
2.1. Hydrodynamic Models

Hydrodynamic models are mathematical models for simulating water movements. According to spatial
representations of water flow, hydrodynamic models can be divided into one‐dimensional (1‐D), two‐
dimensional (2‐D), and three‐dimensional (3‐D) models. The 1‐D models are usually used to simulate flood
inundation in confined river channels or pipes based on the assumption that the velocity distribution is uni-
form in the whole cross section. The 2‐D models can provide detailed information on flood inundation in a
two‐dimensional space, such as the water area and spatial distributions of water depth and velocity. The 2‐D
models are applicable to simulate water inundation in a two‐dimensional space when the third‐dimensional
water depth is shallow compared to the other two dimensions (Teng et al., 2017). In this situation, it is not
necessary to adopt complex 3‐D hydrodynamic models. In this study, a high‐precision 2‐D hydrodynamic
model (HydroM2D; Cao et al., 2017) was adopted to simulate dam‐break water flows and depth‐averaged
Navier‐Stokes equations were used as the governing equations:

∂ ζð Þ
∂t

þ ∂ uhð Þ
∂x

þ ∂ vhð Þ
∂y

¼ 0; (1)

∂ uhð Þ
∂t

þ ∂ u2hð Þ
∂x

þ ∂ uvhð Þ
∂y

¼ −
τbx
ρ

−gh
∂ζ
∂x

; (2)
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∂ vhð Þ
∂t

þ ∂ uvhð Þ
∂x

þ ∂ v2hð Þ
∂y

¼ −
τby
ρ
−gh

∂ζ
∂y

; (3)

where ζ is the relative free water stage; h = ζ + hs is the total water depth; hs is the still water depth; u and v,
respectively, represent the depth‐averaged flow velocity components in the x and y directions; g is the grav-
itational acceleration; ρ is the water density; and τbx and τby are the bed friction stresses in the x and y direc-
tions, respectively.

In the HydroM2D model, equations (1)–(3) are numerically solved with the finite volume method. In the
finite volume method, the governing equations are solved in an integral form. The method can maintain
the conservative properties of numerical solutions (Q. Liang et al., 2004). We adopted the HLLC's approxi-
mate Riemann solution to compute the flow flux based on the two‐dimensional shallow water equations
(Q. Liang & Borthwick, 2009). The spatial and temporal precisions of the model were increased to the
second‐order precision by the MUSCL Hancock method (Q. H. Liang & Borthwick, 2009; Q. H. Liang
et al., 2007). Slope source terms and friction source terms were discretized in order to ensure the model sta-
bility. A local bed modification method was introduced to efficiently and accurately simulate the movement
of wet/dry fronts and water flow characteristics in complex terrains with irregular boundaries.

2.2. Particle Filter‐Based Data Assimilation for the HydroM2D Model

The Kalman Filter (KF) is a widely used sequential data assimilation method. Prediction and analysis equa-
tions of the traditional standard KF method for hydrodynamic modeling can be expressed as equations (4)
and (5). The EnKF were developed based on the KF by generating several ensemble members and adding
perturbations. Equations (4)–(6) can be applied in each ensemble member and the forecast and analysis
update equations for the EnKF are equations (7)–(9) (Burgers et al., 1998):

x f
tþ1 ¼ f xat ; θtþ1;utþ1

� �
; (4)

xatþ1 ¼ x f
tþ1 þKtþ1 Yobs

tþ1‐Htþ1 x f
tþ1

� �h i
; (5)

Ktþ1 ¼ P f
tþ1H

T
tþ1 Htþ1P

f
tþ1H

T
tþ1 þ Rtþ1

� �−1
; (6)

x f
i;tþ1 ¼ f xai;t; θi;tþ1;ui;tþ1

� �
þw;w∼N 0; σmð Þ; (7)

xai;tþ1 ¼ x f
i;tþ1 þKtþ1 Yobs

tþ1−Htþ1 x f
tþ1

� �
þ v

h i
; v∼N 0; σoð Þ; (8)

xatþ1 ¼
1
N

∑
N

i¼1
xai;1þ1; (9)

where f is the hydrodynamic model; x f
tþ1 and x

f
t are, respectively, the states (water stages and discharges) of

the hydrodynamic model at t + 1 and t time steps; θt + 1 and ut + 1 are, respectively, the model parameter
(Manning's roughness coefficient) and forcing data (inflow boundary conditions) at t + 1 time step; Kt+1

and Ht+1 are, respectively, the Kalman gain matrix and the observation operator; Yobs
tþ1 is the observed state

at t + 1 time step; P f
tþ1 is the model state error covariance matrix; Rt+1 is the observation noise covariance;

x f
i;tþ1 and x f

i;t are, respectively, the states (water stages and discharges) of the ith ensemble member at t+ 1
and t time steps; θi,t+1 and ui,t+1 are, respectively, the ensemble member parameter (Manning's roughness
coefficient) and forcing data (inflow boundary conditions) at t + 1 time step; w is the model error with a
mean of zero and standard deviation σm; ν is the observation error with a mean of zero and standard
deviation σo; xatþ1 is the mean of ensemble members; and N is the number of ensemble members. The
EnKF has been widely applied in hydrodynamic modeling. In the EnKF, it is assumed that x f

tþ1 follows a
Gaussian distribution so that the posterior states are only determined by the first two moments (the mean
and the covariance) of the prior density (Xu et al., 2017). However, the assumption is generally invalid in
nonlinear hydrodynamic models (Pasetto et al., 2012).

The PF is a sequential data assimilation method utilizing Monte Carlo ensemble filter methods
(Moradkhani, Hsu, et al., 2005). Compared to the widely used EnKF, the PF can relax the assumption of
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the EnKF that the prior distributions of model states are Gaussian distributions (K. Kim et al., 2014; J. C.
Neal et al., 2007) and is suitable for nonlinear and non‐Gaussian hydrodynamic models and water environ-
ment models (Mattern et al., 2013; Xu et al., 2017). For the nonlinear and non‐Gaussian HydroM2D model,
its recursive formulation of model states can be expressed as

xtþ1 ¼ f xt; θtþ1;utþ1ð Þ þ vtþ1; vtþ1∼N 0; σmð Þ; (10)

where f is the HydroM2Dmodel; xt+1 and xt are, respectively, the model states (water stages and discharges)
at t + 1 and t time steps; θt + 1 and ut+1 are, respectively, the model parameter (Manning's roughness coeffi-
cient) and forcing data (inflow boundary conditions) at t + 1 time step; and vt+1 is the random white noise
associated with the uncertainty of the HydroM2Dmodel structure at t+ 1 time step with a mean of zero and
standard deviation σm.

The physical significance of equation (10) is to realize the recursive estimation of model states x from t
to t + 1 time step with the HydroM2D model and obtain the prior distribution p (xt+1|xt) of model states
xt + 1 at t + 1 time step. Assuming that the model states at t + 1 and previous time steps are observed as
y1:t + 1 = [y1, y2, … , yt, yt + 1] and observations y1:t + 1 are independent, according to the Bayesian theory
(equation (11)), the posterior distribution p (xt + 1|y1:t + 1) of model states xt + 1 at t + 1 time step can be
calculated with equation (12):

p bjað Þ ¼ p ajbð Þ
p að Þ p bð Þ; (11)

p xtþ1jy1:tþ1

� � ¼ p y1:tþ1jxtþ1
� �

p xtþ1ð Þ
p y1:tþ1

� � ¼ p ytþ1; y1:tjxtþ1
� �

p xtþ1ð Þ
p ytþ1; y1:t
� � : (12)

According to the condition probability definition, p(yt+1, y1 : t) can be expressed as

p ytþ1; y1:t
� � ¼ p ytþ1jy1:t

� �
p y1:tð Þ: (13)

According to the joint distribution probability equation, p(yt+1, y1 : t| xt+1) can be expressed as:

p ytþ1; y1:tjxtþ1
� � ¼ p ytþ1jy1:t; xtþ1

� �
p y1:tjxtþ1ð Þ: (14)

According to the Bayesian theory, p(y1 : t| xt+1) can be expressed as

p y1:tjxtþ1ð Þ ¼ p xtþ1jy1:tð Þp y1:tð Þ
p xtþ1ð Þ : (15)

Substituting equations (13)–(15) into equation (12), p(xt+1| y1 : t+1) can be expressed as

p xtþ1jy1:tþ1

� � ¼ p ytþ1jy1:t; xtþ1
� �

p xtþ1jy1:tð Þ
p ytþ1jy1:t
� � : (16)

Assume that the observations are independent, p(yt+1| y1 : t, xt+1) can be expressed as

p ytþ1jy1:t; xtþ1
� � ¼ p ytþ1jxtþ1

� �
: (17)

Substituting equation (17) into equation (16), p(xt+1| y1 : t+1)can be expressed as

p xtþ1jy1:tþ1

� � ¼ p ytþ1jxtþ1
� �

p xtþ1j y1:tð Þ
p ytþ1jy1:t
� � : (18)

It is difficult to calculate analytical solutions of equation (18) due to nonlinear and non‐Gaussian character-
istics of the HydroM2Dmodel. The PF is often used to derive the posterior distributions of model states. The
PF employs a set of particles with weights to estimate the posterior distributions of model states and can
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approximately explore the true posterior distributions of model states when the number of particles tends to
infinity. In practice, a limited number of particles can be used to approximate the posterior distribution due

to computation resource limitation. Assuming that N particles xitþ1;w
i
tþ1

� �N
i¼1have been sampled from the

posterior distribution p(xt+1| yt+1), the posterior distribution p(xt+1| yt+1) can be approximately calculated as

p xtþ1j ytþ1

� �
≈wi

tþ1 ∑
N

i¼1
δ xtþ1−xitþ1

� �
; (19)

where δ is the Dirac delta function and wi
tþ1 is the weight of the ith particle xitþ1at t + 1 time step.

The PF has many procedures for weight updating (Moradkhani, Hsu, et al., 2005; Van Leeuwen, 2009).
Sampling Importance Resampling was adopted to update the particle weight wi

tþ1(equation (20)):

wi
tþ1 ¼

wi
tp ytþ1jxitþ1

� �
∑
N

i¼1
wi
tp ytþ1jxitþ1

� � ; (20)

where p ytþ1jxitþ1

� �
is the likelihood between yt+1 and xitþ1.

Finally, the optimal estimations of the HydroM2D model states can be derived from the posterior distribu-
tions of the HydroM2D model states by means of weighted average method:

bxtþ1 ¼ ∑
N

i¼1
wi
tþ1x

i
tþ1: (21)

In the PF, particle weight update unavoidably leads to particle degeneracy (Snyder et al., 2008). In the
particle degeneracy phenomenon, only a few particles have greater weights and the weights of remaining
particles tend to zero. Particle degeneracy will consume too much computing resource to update the
particles with weights approximating to zero. Resampling is a most commonly used method to solve this
problem and it replicates the particles with greater weights and deletes the particles with small weights.
Here the multinomial resampling method proposed by Gordon et al. (1993) was adopted. First, N
random numbers (rk) are generated from uniform distribution U(0,1]. Second, the cumulative weight

sequence is calculated as follows: ci ¼ ci−1 þ wi
tþ1; c

0 ¼ 0. Third, the number Ni of rk which belongs to the

interval (ci − 1, ci],i = 1,2,⋯,N is counted. Finally, the ith particle pitþ1 is duplicated for Ni times. After

duplication for N times, the same weight 1/N is assigned to all the particles.

Resampling for solving particle degeneracy may result in “sample impoverishment”. Sample impoverish-
ment refers to the case that the diversity of particles may deteriorate due to many times of duplications of
some particles with large weights in resample. Therefore, in order to maintain the particle diversity, a kernel
smoothing method (Moradkhani et al., 2005; Qin et al., 2009; West, 1993) is used to perturb Manning's
roughness coefficients of particles after resampling. The kernel smoothing method can be expressed as

p θtþ1jθtð Þ∼N θitþ1j
ffiffiffiffiffiffiffiffiffiffiffi
1−h2

p
θit þ 1‐

ffiffiffiffiffiffiffiffiffiffiffi
1−h2

p� �
θt; h2Vt

� �
; (22)

where θt+1and θt are the Manning's roughness coefficients of particles at t + 1 and t time steps, respectively;
θitþ1andθ

i
t are theManning's roughness coefficients of the ith particle at t+ 1 and t time steps, respectively;θt

is the mean of Manning's roughness coefficients of particles at t time step; h is the smoothing parameter for
controlling the degree of the perturbation of Manning's roughness coefficient, which increases with the
increase in h; and Vk is the variance of Manning's roughness coefficients of particles at t time step.
Compared to random perturbation, the kernel smoothing method can avoid the gradual increase in the var-
iance of Manning's roughness coefficients (Qin et al., 2009).

In the MPFDA‐LW for the HydroM2D model, the computational domain is discretized by structured grids.
Each grid cell has its own particle set which involves model states (water stage, discharge) and the model
parameter (Manning's roughness coefficient). Particles in different computational grid cells have different
weights (local weighting procedure) and Manning's roughness coefficients (spatial variability of
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Manning's roughness coefficient). Observed water stages are assimilated into the HydroM2D model to
simultaneously update simulated water stages and discharges as well as Manning's roughness coefficients
(temporal variability of Manning's roughness coefficient). The framework of the MPFDA‐LW for the
HydroM2D model considering spatial‐temporal variability of Manning's roughness coefficient is shown in
Figure 1. The detailed procedures of the MPFDA‐LW for the HydroM2D model are described as follow:

Step 1. N particles (equations (23)–(27)) are generated for N_c computational grid cells at the initial time
step (t), respectively. The N particles (P) of N_c computational grid cells jointly represent N flow
states. The water stage, discharge, and Manning's roughness coefficient of each particle are, respec-
tively, generated by adding noises extracted from uniform distributions. To achieve the wider prior
distributions of water stages of particles in the next time step (t + 1), NManning's roughness coeffi-
cients of particles at each computational grid cell are sorted in the descending order. The weight of
each particle is set as 1/N.

Pi;j
t ¼ xi;jt ; n

i;j
t

h i
; xi;jt ¼ zi;jt ;Q

i;j
t

h i
; i ¼ 1; 2;⋯;N; j ¼ 1; 2;⋯;N c; (23)

zi; jt ¼ z jt þ ε jz; ε
j
z∼U −0:01z jt ; 0:01z

j
t

� �
; (24)

Figure 1. Framework of the MPFDA‐LW for the HydroM2D model considering the spatial‐temporal variability of
Manning's roughness coefficient.
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Qi; j
t ¼ Qj

t þ ε jQ; ε
j
Q∼U −0:1Qj

t ; 0:1Q
j
t

� �
; (25)

ni; j
t ¼ nj

t þ ε jn; ε
j
n∼U −0:01; 0:01ð Þ;

ni; j
t ≥niþ1; j

t ; i ¼ 1; 2;⋯;N‐1; j ¼ 1; 2;⋯;N c
(26)

wi; j
t ¼ 1=N; i ¼ 1; 2;⋯;N; j ¼ 1; 2;⋯;N c; (27)

where zi; jt and Qi; j
t are, respectively, the simulated water stages and discharges of the ith particle at the jth

computational grid cell (Pi; j
t ); z jt and Qj

t are, respectively, the simulated water stages and discharges of the
model; ni; jt and nj

t are, respectively, the Manning's roughness coefficient of the ith particle and the initial
Manning's roughness coefficient at the jth computational grid cell; ε jz , ε

j
Q , and ε jn are, respectively, the

perturbation errors of simulated water stages and discharges as well as Manning's roughness coefficient at
the jth computational grid cell; wi; j

t is the weight of the ith particle at the jth computational grid cell; and
U refers to a uniform distribution.

Step 2. N sets of inflow boundary condition (Qi;tþ1
inflow ) at t + 1 time step are generated by adding noises

extracted from Gaussian distributions (equation (28)):

Qi;tþ1
inflow ¼ Qobs;tþ1

inflow þ N 0; 0:01Qobs;tþ1
inflow

� �
; (28)

where Qobs;tþ1
inflow is the observed inflow discharge at t + 1 time step.

Step 3. Perturb Manning's roughness coefficients of particles at the computational grid cells with gauges.

p ni;jtþ1jni;jt
� �

∼N ni;jtþ1j
ffiffiffiffiffiffiffiffiffiffiffi
1−h2

p
ni;jt þ 1−

ffiffiffiffiffiffiffiffiffiffiffi
1−h2

p� �
njt; h

2Vt

� �
; i ¼ 1; 2;⋯N; j ¼ k1; k2;⋯; km; (29)

where nj
t is the mean of Manning's roughness coefficients of particles at the jth computational grid cell and

km is the number of the computational grid cells with gauges.

Step 4. Drive the HydroM2D model by xit, n
i
tþ1, and Qi;tþ1

inflow and simulate the water stage and discharge
with equation (30) at each computational grid cell at the next time step (xitþ1). Note that the white

noise associated with the model structure is not considered.

xitþ1 ¼ f xit; n
i
tþ1;Q

i;tþ1
inflow

� �
: (30)

Step 5. Calculate likelihoods of particles and update the weights of particles. If there are Nobs observed

water stages zjobs;tþ1; j ¼ 1; 2⋯;Nobs at Nobs computational grid cells at t + 1 time step, the weight
of the ith particle is calculated with equation (31). Otherwise, skip to step 7.

wi;j
tþ1 ¼ p zjobs;tþ1jzi;jtþ1

� �
¼ 1ffiffiffiffiffiffi

2π
p

σobs
exp −

zjobs;tþ1−z
i;j
tþ1

� �2

2σ2obs

0
B@

1
CA; (31)

where σobs is the observed standard deviation.

Step 6. Resample the particles at the gauges with observations according to the multinomial resample
method based on the weights of particles. The new particles will have the same weights.

Step 7. Estimate optimal model states and Manning's roughness coefficient at each gauge at t + 1 time step
with equations (32) and (33):

bx j
tþ1 ¼ ∑

N

i
wi; j
tþ1x

i; j
tþ1; (32)

bnj
tþ1 ¼ ∑

N

i¼1
wi; j
tþ1n

i; j
tþ1: (33)

Step 8. Let t = t + 1, repeat steps 3–7 until t is equal to total simulation time.
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Compared to the MPFDA‐LW, the PFDA‐GW adopts spatially uniform Manning's roughness coefficients.
Each particle represents a flow state (e.g., water stages and discharges) andManning's roughness coefficients
(uniform value) at all computational grid cells. The weight of certain particle is calculated with the sub-
weights of the particle at the computational grid cells with gauges according to the joint probability theory
(Giustarini et al., 2011; Xu et al., 2017). The optimal model states andManning's roughness coefficients at all
computational grid cells at t + 1 time step are estimated with equations (34) and (35). The details of the
PFDA‐GW can be found in the report by Giustarini et al. (2011).

bx j
tþ1 ¼ ∑

N

i¼1
wi
tþ1x

i; j
tþ1; (34)

bntþ1 ¼ ∑
N

i¼1
wi
tþ1n

i
tþ1; (35)

wherewi
tþ1 is the global weight of the ith particle at t + 1 time step and bntþ1 is the optimal Manning's rough-

ness coefficient of the HydroM2D model at t + 1 time step.

2.3. Physical Model of Toce River

A physical model (Figure 2a) was established by Ente Nazionale per L'energia Elettrica according to a scale
of 1:100 in the 5 km upstream of Toce River inMilan, Italy (Soares Frazão, 1999). The physical model of Toce
River is a standard model and widely used to test the accuracy and stability of various hydrodynamic models
in simulating dam‐break flood (Lai & Khan, 2012; D. F. Liang et al., 2007; Prestininzi, 2008). It is about 50 m
long and 11 mwide. A DEMwith a spatial resolution of 5 cmwas used to accurately describe the topography
(Figure 2b). There was a reservoir with an opening at the river side. The opening was always closed during
the experiments. Several gauges scattered over the entire model were used to record the time evolution of
water depth (observation frequency of 1 s), but the discharge was not measured. We only obtained the water
stages at 10 gauges shown in Figure 2b. Inflow boundary conditions of this physical model (Figure 2b) were
realized by suddenly increasing the water level in a tank. The inflow discharge process within 180 s (obser-
vation frequency of 1 s) is shown in Figure 3. A free outflow (Figure 2b) was set in the hydrodynamic model.
In the physical model, the initial water depth was 0 m.

In this study, we adopted the physical model of Toce River to validate the
performance of the MPFDA‐LW for the HydroM2D model. The
Manning's roughness coefficient was recommended to be 0.0162 s/m1/3

by Ente Nazionale per L'energia Elettrica. The computational domain
was discretized into structural grid cells with a grid cell size of 0.1 m.
The DEM of grid cell center was interpolated based on the DEM with a
spatial resolution of 5 cm. The grid cell size of 2‐D hydrodynamic models
for a specific scenario depended on the geography and observation condi-
tions. If 2‐D hydrodynamic models were used to simulate the flow on flat
basins or the basins with low‐resolution DEM observation, the grid cell
size would be increased.

Figure 2. (a) General view of Toce River physical model and (b) its topography as well as the locations of gauges.

Figure 3. Inflow discharge hydrograph.
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2.4. PF‐Based Data Assimilation Evaluation

The performances of the MPFDA‐LW, the PFDA‐GW, and the open‐loop HydroM2D model were evaluated
in terms of root‐mean‐square errors (RMSE), average relative error (ARE), and Kling‐Gupta efficiency
(KGE; Gupta et al., 2009). RMSE and ARE, respectively, refer to the absolute and relative errors between
simulated and observed values. KGE is a comprehensive criterion for evaluating the consistency between
simulated and observed values based on correlation (r), variability error (α), and bias error (β). RMSE,
ARE, and KGE are expressed as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
T

i¼1
zi−zobsð Þ2

T

vuuut
; (36)

ARE ¼
∑
T

i¼1
zi−zobsj j=zobs

T
; (37)

KGE ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−1ð Þ2 þ α−1ð Þ2 þ β−1ð Þ2

q
; (38)

α ¼ σs=σo; (39)

β ¼ μs=μo; (40)

where zi is the assimilated/simulated water stages at the ith second; ziobs is the observed water stages in the
ith second; T is the total assimilation time; r is the correlation coefficient between assimilated/simulated
water stages and observed water stages; α is a measure of relative variability in the simulated and
observed values; σs and σo are the standard deviations of assimilated/simulated and observed water
stages, respectively; β is the bias error; and μs and μo are the means of assimilated/simulated and observed
water stages.

3. Results and Discussion
3.1. Performance of the HydroM2D Model

Water stages at 10 gauges were simulated with the HydroM2D model within 180 s. The mean RMSE, ARE,
and KGE of simulated water stages against observed water stages at the 10 gauges were 0.011 m, 0.11%, and
0.83, respectively. Simulated water stages at gauges P1, P2, P8, P19, P21, and S6D are shown in Figure 4.
Simulated water stages at gauges P19 and P21 were consistent with observations, but the HydroM2D model
overestimated or underestimated the water stages at the other four gauges. The model cannot exactly predict
the water stages due to the potential errors of model structures, topography, and grid discretization (D. F.
Liang, Lin, & Falconer, 2007; Prestininzi, 2008). In addition, Manning's roughness coefficient is a spatial‐
temporal parameter associated with riverbed roughness and flow conditions (Y. Kim et al., 2013; Xu et al.,
2017). The HydroM2D model adopts a constant Manning's roughness coefficient, so it is difficult to exactly
predict the observed water stages at each gauge with the model.

3.2. Sensitivity Analysis of PF‐Based Data Assimilation Parameters

The number of particles (N), observation error (σo), and assimilation frequency (AF) have significant influ-
ences on the performance of PF‐based data assimilation (Matgen et al., 2010; Plaza et al., 2012; H. J. Zhang
et al., 2013). In order to determine the three parameters, we analyzed the sensitivities of the three parameters
of the MPFDA‐LW to the HydroM2D model in simulating dam‐break flood inundation based on the physi-
cal model of Toce River. In the sensitivity analysis, the ranges, step sizes, and initial values of N, σo, and AF
are provided in Table 1. The sensitivity of a certain parameter was analyzed with the initial values of the
other two parameters.

Observed water stages within 180 s at the 10 gauges were assimilated in the MPFDA‐LW for the HydroM2D
model. The mean KGE of assimilated water stages derived from the PF‐based data assimilation against
observed water stages at the 10 gauges with the increase in the N, σo, and AF are shown in Figure 5. The
mean KGE of assimilated water stages at the 10 gauges marginally increased with the increase in N as a
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whole. However, runtime of the PF‐based data assimilation linearly increased with the increase in N
(Figure 5a; H. J. Zhang et al., 2013). Therefore, N was set to be 100 in order to simultaneously obtain the
high computational efficiency and assimilation accuracy of the PF‐based data assimilation. The mean
KGE of assimilated water stages at the 10 gauges increased with the increase in σo and AF (Figures 5b
and 5c; Matgen et al., 2010; Plaza et al., 2012). Therefore, σo and AF were, respectively, set to be 0.01 m
and 1 s.

In general, the assimilation accuracy increases with the increase in the number of particles, but runtime
proportionally increases with the increase in the number of particles (Han & Li, 2008). The performance
of PF‐based data assimilation is sensitive to the standard deviation of observation errors (Han & Li, 2008).
A small standard deviation of observation error will result in the serious degeneracy phenomenon in the
PF‐based data assimilation (Han & Li, 2008), whereas a large standard deviation of observations will result

in the small sensitivity of particle weights to observations and decrease the
performance of PF‐based data assimilation (Matgen et al., 2010). In addi-
tion, the PF‐based data assimilation with a high assimilation frequency
can avoid error accumulation and improve its performance through the
timely assimilation of observations at more time steps (Plaza et al.,
2012). In practice, the three parameters of the PF‐based data assimilation
for hydrodynamic models for a specific scenario should be determined
according to application requirements and observation conditions.

Figure 4. Water stages at gauges (a) P1, (b) P2, (c) P8, (d) P19, (e) P21, and (f) S6D simulated with the HydroM2D model and observations. Blue full lines and red
circles, respectively, refer to open‐loop assimilations and observations of water stages.

Table 1
Ranges, Step Sizes, and Initial Values of N, σo, and AF

Parameters Initial value Minimum Maximum Step

N 100 20 200 20
σo 0.01 0.01 0.05 0.01
AF 1 1 8 1
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3.3. Performances of the MPFDA‐LW for the HydroM2D Model

In MPFDA‐LW, the number of particles (N), observation error (σo), and assimilation frequency (AF) were,
respectively, set as 100, 0.01 m, and 1 s. In the kernel smoothing method, h and Vk were, respectively, set
as 0.2 and 3 × 10−4. We assimilated the observed water stages from the 20th to 160th second (assimilation
period) at the 10 gauges and used those of the 161th to 180th second to validate the propagation of assimila-
tion effect in time dimension. Although we only assimilated the observed water stages into the HydroM2D
model, the discharges and Manning's roughness coefficients coupled with water stages as a part of the par-
ticles were also corrected indirectly (Xu et al., 2017). The assimilated discharges were not analyzed in our
study due to the lack of observed discharges. In addition, the assimilated surface water extents were not eval-
uated due to the lack of observed surface water extents.

Scatterplots of assimilated, simulated, and observed water stages at gauges P1, P2, P8, P19, P21, and S6D are
shown in Figure 6. The points of assimilated water stages were closer to the 1:1 line than those of simulated
water stages. The performance of the MPFDA‐LW for the HydroM2D model (RMSE: 0.005 m, ARE: 0.05%,
KGE: 0.91) was better than that of the open‐loop simulation (RMSE: 0.011 m, ARE: 0.11%, KGE: 0.83).

The 90% confidence intervals of assimilated water stages at the 10 gauges are shown in Figure 7. These con-
fidence intervals could not fully cover the observed water stages because only the uncertainty associated
with Manning's roughness coefficient and inflow boundary conditions were considered in the MPFDA‐
LW for the HydroM2D model. In order to improve the performance of the MPFDA‐LW for the
HydroM2Dmodel, other uncertainties associated with input data (e.g., river‐bed geometry) andmodel struc-
tures (e.g., governing equations and numerical computation method) should be considered in the PF‐based
data assimilation coupled with the uncertainties associated with Manning's roughness coefficient and
boundary conditions (Xu et al., 2017).

The MPFDA‐LW for the HydroM2D model had good performances in the assimilation (the 20th to 160th
second) and prediction periods (from the 161th to 180th second). In the assimilation period, the assimila-
tions of water stages at different gauges derived from the MPFDA‐LW were consistent with the observed
water stages (Figure 7). In the prediction period, the assimilated water stages at different gauges were still
close to the observed water stages, indicating that the assimilation effect of the MPFDA‐LW for the
HydroM2D model could propagate in the temporal dimension. Only the Manning's roughness coefficients
at the 10 gauges were updated with the water stage assimilation, so the assimilation effects of the
MPFDA‐LW for the HydroM2D model could not propagate in the spatial dimension.

Figure 5. Mean KGE of assimilated water stages at the 10 gauges derived from the MPFDA‐LW for the HydroM2Dmodel
with (a) different numbers of particles, (b) observation errors, and (c) assimilation frequencies, as well as runtime of
MPFDA‐LW with different numbers of particles (a).
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Figure 8 shows the optimal Manning's roughness coefficients at the 10 gauges derived from the MPFDA‐LW
for the HydroM2Dmodel. The optimal Manning's roughness coefficients at different gauges gradually varied
with time and showed the significant difference. It should be noted that the optimal Manning's roughness
coefficients derived from the MPFDA‐LW for the HydroM2D model could not represent the true roughness
because the weights of particles were calculated with the simulation errors of water stages, which included
the uncertainties of river bed roughness, geography, inflow conditions, and other model errors (Camacho
et al., 2015). The MPFDA‐LW for the HydroM2D model could adaptively adjust Manning's roughness coef-
ficients according to particle weights. Consequently, the optimal Manning's roughness coefficients derived
from the MPFDA‐LW for the HydroM2D model involved certain uncertainties associated with geography,
inflow conditions, and other model errors.

The 90% confidence intervals of theManning's roughness coefficients at gauges P1, P2, P8, P19, P21, and S6D
derived from the MPFDA‐LW are shown in Figure 9. The 90% confidence intervals of Manning's roughness
coefficients at the six gauges varied with assimilation step and did not become narrow (Figure 9), indicating

Figure 6. Scatterplots of assimilated (data assimilation (DA)), simulated (open loop (OL)), and observed (OBS) water stages at gauges P1, P2, P8, P19, P21, and S6D.
Blue and red circles, respectively, indicate the points of “OBS versus OL” and “OBS versus DA.” Black line indicates the 1:1 line.
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that Manning's roughness coefficients had the significant uncertainty and obvious spatial‐temporal
variability. Figure 10 shows the spatial‐temporal variability of Manning's roughness coefficients (e.g., the
20th second and 180th second). In the MPFDA‐LW for the HydroM2D model, each grid cell had its own
particle set and only the weights of the particles at the grid cells with gauges could be updated via water
stage assimilation. The weights of the particles at other grid cells maintained their prior values (1/N).

Therefore, only the Manning's roughness coefficients at the 10 grid cells
with gauges could be estimated with water stage assimilation and the
Manning's roughness coefficients at other computational grid cells were
prior values and fluctuated around the recommended value.

3.4. Performances of the PFDA‐GW for the HydroM2D Model

The same parameters were set for the PFDA‐GW for the HydroM2D
model. Scatterplots of assimilated water stages at gauges P1, P2, P8, P19,
P21, and S6D derived from the PFDA‐GW are shown Figure 11. Only
the points of assimilated water stages at gauges P1 and P2 were closer to
the 1:1 line than those of simulated water stages. The performance of
the PFDA‐GW for the HydroM2D model (RMSE: 0.01 m, ARE: 0.10%,
KGE: 0.85) was slightly better than that of the open‐loop simulation
(RMSE: 0.011 m, ARE: 0.11%, KGE: 0.83). In the PFDA‐GW for

Figure 7. The 90% confidence intervals (green background) of assimilated water stages at gauges (a) P1, (b) P2, (c) P8, (d) P19, (e) P21, and (f) S6D derived from the
MPFDA‐LW for the HydroM2D model. Blue full lines, black full lines, and red circles, respectively, indicate the open‐loop assimilations, assimilations, and
observations of water stages.

Figure 8. Optimal Manning's roughness coefficients at the 10 gauges
derived from the MPFDA‐LW for the HydroM2D model. Black line indi-
cates the recommended Manning's roughness coefficient.
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Figure 9. The 90% confidence intervals of the Manning's roughness coefficients at gauges (a) P1, (b) P2, (c) P8, (d) P19, (e) P21, and (f) S6D derived from the
MPFDA‐LW for the HydroM2D model.

Figure 10. Spatial variability of Manning's roughness coefficients at the (a) 20th second and (b) 180th second.
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HydroM2D model, particle weights simultaneously depended on the water stages of particles at all the 10
gauges. The PFDA‐GW aims to obtain the global optimal estimation of water stages at all gauges. In
addition, Manning's roughness coefficient is a spatial‐temporal parameter associated with riverbed
roughness and flow conditions. The particles in the PFDA‐GW for HydroM2D model with uniform
Manning's roughness coefficients cannot simultaneously obtain the optimal estimation at all the gauges
due to potential errors of topography and spatial‐temporal variability of Manning's roughness coefficient
(Giustarini et al., 2011; D. F. Liang, Lin, & Falconer, 2007; Prestininzi, 2008; Xu et al., 2017).

The characteristics of the 90% confidence intervals of assimilated water stages at different gauges derived
from the PFDA‐GW were different (Figure 12). The 90% confidence intervals of assimilated water stages
at gauges P1, P2, and S6D near the inflow boundary were wider than those at gauges P5, P19, and P21
due to the perturbation influence of inflow discharge. The 90% confidence intervals of assimilated water
stages at gauges P5, P8, P19, and P21 far away from the inflow boundary were extremely narrow. This phe-
nomenon can be interpreted as follows. First, water stages of particles at gauges far away inflow boundary
were less affected by the perturbation of inflow discharge. Second, the diversity of flow states of particles

Figure 11. Scatterplots of the assimilated (data assimilation (DA)), simulated (open loop (OL)), and observed (OBS) water stages at gauges P1, P2, P8, P19, P21, and
S6D. Blue and red circles, respectively, indicate the points of “OBS versus OL” and “OBS versus DA.” Black line indicates the 1:1 line.
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at a certain assimilation time step was significantly reduced after particle resampling through executing the
perturbation of Manning's roughness coefficients (Y. Kim et al., 2013; Xu et al., 2017). Third, the high‐
frequency data assimilation (e.g., 1‐s assimilation frequency) was adopted in simulating the dam‐break

flood because it always drastically varied within a short period (Aureli
et al., 2000). The three main factors in the PFDA‐GW resulted in the
narrow prior ranges of simulated water stages (gauge P21; Figure 13)
and the narrow 90% confidence intervals. PFDA‐GW had the poor
ability to derive the prior range of simulated water stages.

The PFDA‐GW for the HydroM2D model considering spatially uniform
Manning's roughness coefficient could only estimate the temporal varia-
bility of Manning's roughness coefficients. The optimal estimation of
Manning's roughness coefficient derived by the PFDA‐GW for the
HydroM2D model fluctuated around the recommended value
(Figure 14). Particle weights in the PFDA‐GW for the HydroM2D model
simultaneously depended on simulated water stages at the 10 gauges, so
the optimal estimation of Manning's roughness coefficients was the opti-
mal global estimation of Manning's roughness coefficients at the
10 gauges.

Figure 12. The 90% confidence intervals (green background) of assimilated water stages at gauges (a) P1, (b) P2, (c) P8, (d) P19, (e) P21, and (f) S6D derived from the
PFDA‐GW for the HydroM2D model. Blue full lines, black full lines, and red circles, respectively, indicate the open‐loop assimilations, assimilations, and
observations of water stages.

Figure 13. Prior ranges of simulated water stages of particles at gauge P21 in
the PFDA‐GW for the HydroM2Dmodel. Different colors represent different
particles.
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3.5. Comparison of the Performances of the MPFDA‐LW and the
PFDA‐GW for the HydroM2D Model

The RMSEs, AREs, and KGEs of assimilated water stages derived by the
MPFDA‐LW, the PFDA‐GW, and the open‐loop simulations at the 10
gauges are shown in Figure 15. Compared to the open‐loop simulations,
the MPFDA‐LW could significantly improve the performance of the
HydroM2D in simulating dam‐break flood inundation at all 10 gauges.
However, the PFDA‐GW could not improve the performance of
the HydroM2D model in simulating the water stages at each gauge. The
RMSEs and AREs of the assimilated water stages derived from the
PFDA‐GW for the HydroM2D model at several gauges were greater than
those derived from open‐loop simulations (e.g., gauges P4, S6D, and S8D).
The results indicated that the MPFDA‐LW for the HydroM2D model con-
sidering spatial‐temporal variability of Manning's roughness coefficients
was more suitable for simulating and predicting flood inundation.

3.6. Discussion

The MPFDA‐LW for the HydroM2D model considering the spatial‐
temporal variability of Manning's roughness coefficients showed the good
performance in simulating and predicting water stages at different gauges
through simultaneously updating corresponding Manning's roughness
coefficients with water stage assimilation. By contrast, Xu et al. (2017)
and Y. Kim et al. (2013) only adopted different Manning's roughness coef-
ficients at some separated zones (e.g., river channel, floodplain, and the
area colonized by trees) and the global weighting procedure (Giustarini
et al., 2011) to update the weights of particles. The PF‐based data assimi-
lation method aimed to achieve balanced model performances at several
hydrological stations simultaneously. Therefore, in order to reach a global
optimum, the performances of the PF‐based data assimilation method at
any individual cross section or computational grid cells were sacrificed.
In addition, Giustarini et al. (2011) and Matgen et al. (2010) adopted con-
stant Manning's roughness coefficients in the PF‐based data assimilation
method for 1‐D model. Flow conditions of dam‐break flood often drama-
tically varies within a short time, so the Manning's roughness coefficients
at different areas with different geography, underlying surfaces, and flow
conditions vary with dam‐break flood inundation (Xu et al., 2017).
Therefore, it is difficult to improve the performance of 2‐D hydrodynamic
models in the simulation of dam‐break flood inundation with existing
PF‐based data assimilation methods.

The assimilation effects of the MPFDA‐LW for the HydroM2D model
could be propagate in the temporal dimension, but the assimilation effects
were difficult to be propagate in the spatial dimension due to the particu-
lar local weighting procedure adopted in theMPFDA‐LW. Actually, in the
procedure, only the weights of particles at the gird cells with gauges were
updated based on the likelihoods between simulated stages with observed
stages. Therefore, the influences of assimilation were limited to the grid
cells with gauges. Other localized PFs might enhance the influences of
assimilation in the spatial dimension (Penny & Miyoshi, 2016; Poterjoy,
2016; Poterjoy et al., 2019). In these localized PFs, the grid cells around
the observation gauges were considered as a single block of N particles.
The states of the block were subjected to the same update according to
the observation. The performances of the localized PF‐based data assimi-
lation methods for hydrodynamic models should be further explored.

Figure 14. The 90% confidence intervals of the Manning's roughness coeffi-
cients at the whole computational domain derived from the PFDA‐GW for
the HydroM2D model.

Figure 15. RMSEs (a), AREs (b), and KGEs (c) of assimilated water stages
derived from the MPFDA‐LW and the PFDA‐GW for the HydroM2D
model and simulated water stages derived from the open‐loop simulations
against observed water stages at the 10 gauges.
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In the study, we demonstrated that the MPFDA‐LW for the HydroM2D model with a high assimilation
accuracy was suitable for simulating and predicting flood inundation. It also had the potential in improving
the performance of hydrodynamic models in simulation and prediction of hydrodynamic processes with
complex geography and underlying surfaces. A flood flow generally significantly varies within a short time
compared to the relatively stable flow in river basins and lakes, so inflow boundary conditions and water
stages in the Toce River physical model were observed frequently (per second). The high observation
frequency provided the condition of high assimilation frequency. In practice, the assimilation frequency
of the MPFDA‐LW for hydrodynamic models for a specific scenario should be determined according to
application requirements and observation conditions. With the upcoming Surface Water Ocean
Topography mission and the development of wireless sensor monitoring systems (e.g., automatic hydrologi-
cal monitoring station), more available global observations of water stages with a high accuracy can be used
to improve the simulation and prediction abilities of hydrodynamic models with the MPFDA‐LW.

4. Conclusions

In this study, we proposed amodified PF‐based data assimilationmethod with the local weighting procedure
(MPFDA‐LW) for a 2‐D hydrodynamic model (HydroM2D) considering the spatial‐temporal variability of
Manning's roughness coefficients. In addition, another PF‐based data assimilation with the global weighting
procedure (PFDA‐GW) for the HydroM2D with the spatially uniform Manning's roughness coefficient was
adopted. The performances of the MPFDA‐LW and the PFDA‐GW for the HydroM2D in simulating
dam‐break flood inundation in the physical model of Toce River were evaluated and compared. In the
MPFDA‐LW and the PFDA‐GW, observed water stages were assimilated into the HydroM2D model to
simultaneously adjust simulated water stages and update Manning's roughness coefficients.

The MPFDA‐LW could simultaneously improve the performances of the HydroM2D model in simulating
and predicting water stages at all the 10 gauges through updating Manning's roughness coefficients. By con-
trast, the PFDA‐GW could not improve the performances of the HydroM2D model in simulating water
stages at most gauges. Overall, the MPFDA‐LW had the higher potential in improving the performance of
hydrodynamic models in simulating and predicting flood inundation and hydrodynamic processes in river
basins and lakes.

The 90% confidence intervals of assimilated water stages at 10 gauges derived by the MPFDA‐LW for the
HydroM2D model could not entirely involve the observed water stages because the PF‐based data assimila-
tion method only considered the uncertainties associated with Manning's roughness coefficients and inflow
conditions. In order to further improve the performance of the PF‐based data assimilation, other uncertain-
ties from input data (e.g., river‐bed geometry) andmodel structures (e.g., governing equations and numerical
computation method) should be considered in the PF‐based data assimilation in the future (Moradkhani,
Hsu, et al., 2005; Xu et al., 2017).
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