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A B S T R A C T

Presented in this paper is a theoretical and numerical analysis for active particles in a fully developed steady
wetland flow dominated by the free-surface effect. An ecological risk assessment model for the concentration
distribution of active particles is devised as an extension of the general form of concentration transport equation
for passive particles in wetland flows. The vorticity in the free-surface wetland flow is found to depend on the
dimensionless parameter α, which reflects the combined action of vertical momentum dispersion, microscopic
curvature of flow passages, friction of vegetation and water depth. The large α results in the decrease of vorticity
at the free surface and the increase at the bed bottom. The analytical solution of stable concentration distribution
is rigorously derived for the active particles in both weak and strong vortical flows, under the combined action of
the effective mass dispersion by the ambient flow, as well as the translational diffusion and vertical swimming by
the active particles. It is found that the strong vorticity weakens the concentration of active particles in the free-
surface wetland flow, while the strong diffusion, by the wetland flow and active particles, enhances the con-
centration. The large α results in the increase of concentration near the free surface and the decrease of con-
centration near the bed bottom. The time scale for active particles to reach the stable concentration distribution
is mainly dependent on the dimensionless parameter, Pe, which reflects the relative strength of the vertical
swimming and the total diffusion due to the wetland flow and the active particles.

1. Introduction

Wetlands have significant ecosystem service values, in terms of
water purification, groundwater recharge, growth of living materials,
protection of biodiversity (Mitsch and Gosselink, 1993; Costanza et al.,
1997; Noor Islam et al., 2014; Mujere and Eslamian, 2015), etc. For
ecological risk assessments and ecological restoration associated with
wetlands, an essential issue is to determine the vertical distribution of
particles wherein, including the active and passive particles (Nepf et al.,
2007; Chen et al., 2010; Nepf, 2012; Luo et al., 2016; Zeng and Pedley,
2018).

There are a large number of passive particles in wetlands, such as
mineral particles, soil particles, plastic pellets, etc. The passive parti-
cles, in general, move by means of advection caused by the ambient
flow, Brownian motion due to random collisions, as well as the density
difference of them and the ambient fluid. Regarding the concentration
distribution of passive particles in wetland flows, many efforts have
been made, with focus on the dispersion of soluble materials under

physical, chemical, and biological processes, etc. There are three typical
methods for analyzing the solute dispersion and concentration, in-
cluding Taylor’s analysis on dispersion (Taylor, 1953; Taylor, 1954),
method of concentration moments (Aris, 1956, 1960), and method of
multi-scale expansion (Mei et al., 1996).

The physical processes related to the distribution of passive particles
mainly depend on the hydrodynamic conditions, the morphology and
distribution of vegetation, wind stress exerted on the free water surface,
etc. Lightbody and Nepf (2006a,b) presented a formula of longitudinal
dispersion coefficient for the soluble materials in the flow through a salt
marsh fully vegetated by emergent vegetation. Murphy et al. (2007)
and Nepf and Ghisalberti (2008) analyzed the behaviors of longitudinal
dispersion in turbulent flow. Based on the method of concentration
moments and the method of multi-scale expansion, the transport and
distribution of passive particles have been analyzed for a single-zone
wetland flow (Zeng and Chen, 2011; Zeng et al., 2015; Wu et al.,
2011b,c, 2012; Chen, 2013), as well as the two- and three-zone (layer)
wetland flows (Chen et al., 2011; Wang et al., 2013, 2014; Wu et al.,
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2011a, 2015, 2016; Luo et al., 2016, 2017). Wind also plays an im-
portant role in determining the vertical distribution of passive particles
in the wetland flow, by exerting a shear stress on the water surface.
Some ecological indicators were also presented to evaluate the effects of
wind on contaminant transport (Guo et al., 2018).

Chemical and biological processes are also important for the dis-
tribution of passive particles (US EPA, 1999; Sağ et al., 2000;
Fereidouni et al., 2009; Chiban et al., 2011). By use of an exponential
transformation, Zeng and Chen (2011) presented an analytical solution
for the evolution of depth-averaged concentration of single component
contaminant due to an irreversible reaction and hydraulic dispersion.
Recently, some analytical endeavors have been made to reveal the
characteristic of bicomponent contaminant transport in wetland flows
dominated by the free-surface and bank-wall effects (Chen et al., 2012;
Zeng et al., 2014).

The distribution of active particles in wetland flows is more complex
than that of passive particles, due to the swimming behaviors of active
particles (Pedley and Kessler, 1990, 1992; Hill and Bees, 2002; Bearon
et al., 2011; Goldstein, 2015). Regarding the concentration distribution
of active particles, there have been various theoretical, experimental
and numerical investigations, with focus on the distribution of gyro-
tactic micro-organisms in typical flows in the absence of vegetation,
such as the flow through a vertical tube or channel (Kessler, 1985,
1986; Hwang and Pedley, 2014), the horizontal shear flow between two
parallel walls (Durham et al., 2009, 2013), the flow in a rotating cy-
lindrical vessel (Lillo et al., 2014), the density stratified flow (Ardekani
et al., 2017), the free surface flow (Lovecchio et al., 2014, 2017;
Mashayekhpour et al., 2017; Enriquez and Taylor, 2015), and the tur-
bulent channel flow in photobioreactors (Croze et al., 2013). However,
the distribution of active particles in the wetland flow have not been
understood very well. Very recently, Zeng and Pedley (2018)

investigated the concentration distribution of gyrotactic micro-organ-
isms in the flow past a single vertical circular cylinder, which is a
simple proxy of the flow through the wetland with sparse vegetation. A
reliable ecological risk assessment and ecological restoration in the
wetland flow requires a reasonable understanding of the behavior of
both active and passive particles. However, the current analytical ef-
forts mainly focus on the distribution of passive particles, and up to
now, no analytical solution has been presented to predict the con-
centration distribution of active particles in the free-surface wetland
flow.

This work is to investigate the concentration distribution of active
particles in the free-surface wetland flow. The active particles con-
sidered here are gyrotactic micro-organisms, which widely exist in
wetlands. Many significant ecological phenomena are caused by gyro-
tactic micro-organisms. For example, the red tide in the coastal region is
often caused by the massive growth and accumulation of Heterosigma
akashiwo. The specific objects are: (I) to formulate the typical case of
concentration evolution of active particles in the free-surface wetland
flow, (II) to obtain the analytical solution of vorticity in the free-surface
wetland flow, (III) to find the concrete expression for stable distribution
of active particles in both weak and strong vortical flows, and (IV) to
determine the effects of typical parameters on the stable concentration
distribution and the time scale to reach the stable status.

2. Formulation

In the present work, the term, active particles, refers to the gyro-
tactic micro-organisms which execute directional or random motions by
rotating, waving or undulating flagella, while the term, passive parti-
cles, refers to the non-living particles without the ability to convert its
internal energy to kinetic motion, for example, mineral particles. The

Nomenclature

B gyrotactic parameter to reflect the time scale for reor-
ientation of active particle, s.

C concentration of active particles, −kg m 3.
C0 concentration of active particles at the bed bottom,

−kg m 3.
Dcw parameter to reflect the relative strength of the effective

mass dispersion in the vertical direction due to the wet-
land flow and the vertical translational diffusion due to
particles’ swimming.

Dr rotary diffusivity, −s 1.
Kij component of mass dispersivity tensor caused by the

wetland flow, −m s2 1.
KV vertical mass dispersivity, −m s2 1.
H water depth, m.
Pe parameter to reflect the relative strength of the mean

swimming and the total diffusion, dimensionless.
Pes parameter to reflect the relative importance of active

particles’ swimming and vertical translational diffusion,
dimensionless.

t time, s.
t0 time scale for concentration distribution to reach the

stable status, s.
ui velocity component of ambient flow, −m s 1.
ui

s velocity component of active particles swimming, −m s 1.
us swimming velocity in the weak vortical flow, −m s 1.
u ζ( ) velocity at the vertical position −ζ , m s 1.
Um depth-averaged velocity, −m s 1.
Vs swimming speed of active particles −m s 1.
ws vertical swimming velocity in the weak vortical flow,

−m s 1.

x x,i j spatial coordinates, m.
α dimensionless parameter to represent the combined action

of vertical momentum dispersion, microscopic curvature
of flow passage, friction of vegetation, and water depth,
dimensionless.

ζ dimensionless vertical coordinate, dimensionless.
θ polar angle in the spherical coordinated system, di-

mensionless.
κ tortuosity, dimensionless.
λ mass diffusivity, −m s2 1.
λij

s component of translational diffusivity tensor, −m s2 1.
λ λ λ, ,xx

s
yy
s

zz
s diagonal component of translational diffusivity tensor,

−m s2 1.
σ parameter to represent the relative strength of cells’ re-

orientation and rotational diffusion, dimensionless.
τ dimensionless time, dimensionless.
ϕ porosity, dimensionless.
ψ0 dimensionless vertical swimming velocity in the weak

vortical flow, dimensionless.
ψV

r dimensionless vertical swimming velocity, dimensionless.
ω vorticity, −(m )1 .
ω0 parameter to represent the relative strength of flow shear

to reorientation of active particles, dimensionless.
ωr dimensionless vorticity, dimensionless.
ωr

max maximum vorticity, dimensionless.
ωr

min minimum vorticity, dimensionless.
ω ω,x y horizontal components of vorticity, −m 1.
Ω dimensionless time, dimensionless.

′g1 differentiation of g1 with respect to θcos( ).
∇ the del operator.
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governing equation for the concentration transport of active particles in
the wetland flow can be adopted at the phase average scale as (Liu
et al., 2005; Chen et al., 2010; Chen, 2013)
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where ϕ (dimensionless) is porosity, C −(kg m )3 the concentration of
active particles, t (s) time, xi (m) and xj (m) the spatial coordinates
( =i j, 1, 2, 3), ui

−(m s )1 the velocity component of ambient flow, ui
s

(m s-1) the velocity component of active particles swimming, κ
(dimensionless) the tortuosity, λ −(m s )2 1 the mass diffusivity, Kij

−(m s )2 1

the component of mass dispersivity tensor caused by the wetland flow,
and λij

s −(m s )2 1 the component of translational diffusivity tensor caused
by active particles. The diffusion term Kij exists for both passive and
active particles. The term λij

s is related to the rate of strain, vorticity, as
well as cells’ morphology. In general, the term λij

s varies with position
for a velocity profile with spatially varying rate of strain and vorticity.
However, for the spherical gyrotactic cells, λij

s is only dependent on the
vorticity. As the first step of theoretical analysis of the distribution of
gyrotactic micro-organisms in the wetland flow, the micro-organisms
considered in the present work are approximately spherical micro-or-
ganisms, such as Chlamydomonas, Dunaliella, etc., which are found in
many important ecological phenomena associated with wetland flows,
for example harmful algal blooms. Furthermore, the contribution of λij

s

to the concentration distribution of micro-organisms, is mainly related
to its diagonal components rather than its off-diagonal components,
since the latter are much less than the former. Also, the existence of
horizontal vorticity can weaken the difference between the horizontal
components, λxx

s and λyy
s , and vertical component, λzz

s . For the case of
large ambient vorticity, ≈ ≈λ λ λxx

s
yy
s

zz
s . Even for the case of vorticity

equal to zero, λzz
s is still comparable to the horizontal components. It is

noted that the strong vorticity can change the mean swimming velocity
greatly, resulting in the large variation of concentration distribution of
micro-organisms. Many active particles, say Chlamydomonas reinhardtii,
exhibit the behavior of diel vertical migration (diurnal vertical migra-
tion) that the active particles swim upwards for photosynthesis in the
daytime and settle down to gain nutrients at light.

Consider a fully developed steady free-surface wetland flow with
constant ϕ κ K, , ij and λzz

s , in the Cartesian coordinate system with the
longitudinal x-axis aligned with the flow direction, the vertical z-axis
upwards, and the origin at the bottom bed, as shown in Fig. 1. Consider
the concentration distribution of active particles with the initial con-
centration zero in the free-surface wetland flow, caused by the upward
migration of the active particles from the bottom layer with constant
concentration C0. The concentration distribution is uniform in the
streamwise direction, and the governing equation Eq. (1) reduces to
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where ws (m s-1) is the vertical swimming velocity of active particles,
and KV

−(m s )2 1 is the vertical mass dispersivity.
For the free water surface, we have zero-flux boundary condition
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where H (m) is the water depth, which means that the active particles
cannot escape from the water body through the free surface.

With dimensionless parameters of
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where Vs (m s-1) denotes the swimming speed of active particles, the
governing equation, boundary conditions and initial conditions for the
concentration distribution can be rewritten as
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where Pes (dimensionless) reflects the relative importance of active
particles’ swimming and vertical translational diffusion, and Dcw
(dimensionless) reflects the relative strength of the effective mass dis-
persion in the vertical direction due to the wetland flow and the vertical
translational diffusion due to particles’ swimming.

3. Vorticity distribution in the free-surface wetland flow

For the swimming of gyrotactic micro-organisms, vorticity ω −(m )1

is an important indicator to influence the swimming velocity and di-
rection, especially for the spherical gyrotactic micro-organisms (Pedley
and Kessler, 1992). For the weak vorticity field, the active particles can
swim upwards in the non-vertical direction, while, for the strong
voriticity filed, they tumble unsteadily. Vorticity is a pseudo vector field
to reflect the local spinning motion of a continuum, defined as

= ∇ ×ω u, where ∇ is the del operator.
For the free surface wetland flow, the vertical velocity profile has

been given by Zeng and Chen (2011)

=
− −

−
u ζ U

α α ζ
α α α α

( )
cosh cosh[ (1 )]

( cosh sinh )/m
(7)

where Um
−(m s )1 is the depth-averaged velocity, and α is a di-

mensionless parameter to represent the combined action of vertical
momentum dispersion, microscopic curvature of flow passage, friction
of vegetation, as well as water depth. Therefore, the dimensionless
vorticity, ωr , for the free-surface wetland flow can be expressed as

= =
−

−
ω ω

B
ω

α α ζ
α α α1/

sinh[ (1 )]
cosh sinhr 0

2

(8)

where B (s) is the gyrotactic parameter to reflect the time scale for re-
orientation of active particles by the gravitational torque against the
viscous torque exerted by the shear of ambient flow, and =ω BU H/m0

reflects the relative strength of the flow shear and reorientation of ac-
tive particles. Fig. 2(a) presents the variation of ωr with ζ for various α.
The maximum vorticity = −ω ω α α α α αsinh( )/( cosh sinh )r

max
0

2 always
appears at the bed bottom, while the minimum vorticity =ω 0r

min al-
ways exists at the free water surface. In contrast to the dependence of
the maximum vorticity on α, the minimum vorticity keeps constant. ωr
increases with the increase of α for the region near the free water
surface, while it decreases for the region near the bottom. Fig. 2(b)
presents the variation of ωr with ζ for various ω0. It is shown that the
larege ω0 can enhance the vorticity in the whole region.

Fig. 1. Sketch for a free-surface wetland flow.
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4. Stable distribution of active particles in the weak vortical flow

For the long time evolution of passive particles, the concentration
distribution can reach a asymptotic stable status. Further more, the
swimming velocity of gyrotactic micro-organisms for the weak vorticity
flow of ≪ωB| | 1 can be expressed, in the present notation, as (Pedley
and Kessler, 1990)

= −u
V

Bω J Bω J ψ( , , )
s

s
y x1 1 0 (9)

where ωx
−(m )1 and ωy

−(m )1 are the horizontal components of ω, and J1
(dimensionless) and ψ0 (dimensionless) are the parameters associated
with B and Dr

−(m s )2 1 , where Dr is the rotary diffusivity to reflect the
randomness of active particles. ψ0 can be expressed as (Pedley and
Kessler, 1990)

= − =ψ λ
σ

σ
BD

coth( ) 1 , 1
r

0 (10)

where σ represents the relative strength of cells’ reorientation and ro-
tary diffusion. The large σ means the relative strong gyrotaxis, while
the small σ is corresponding to the strong randomness. J1 can be ex-
pressed, in the present notation, as (Pedley and Kessler, 1990)
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where ′g1 denotes for the differentiation of g1 with respect to =q θcos( ),
with θ standing for the polar angle in the spherical coordinate system in
which =θ 0 is vertically upward.

Therefore, for the case of weak vortical flow of

−
−

≪ω
α α ζ
α α α

sinh[ (1 )]
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10

2

(13)

the vertical swimming velocity is independent of position, and the de-
finite problem described by Eq. (5) can be simplified as
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Eq. (14) is a second-order linear ordinary differential equation with
constant coefficients, and its solution is

=ζ Peψ ζΩ( ) exp( )0 (15)

where = +Pe Pe D ϕκ/[(1 ) ]s
cw reflects the relative strength of the mean

swimming and the total diffusion, including the effective mass disper-
sion in the vertical direction caused by the wetland flow and the ver-
tical translational diffusion caused by the active particles. The con-
centration distribution of active particles is subject to the exponential
distribution in the weak shear flow. The concentration at the free sur-
face increases with the increase of upward swimming velocity, because
the large vertical swimming velocity means the large Pes for a given
wetland flow. For the case of positive ψ0, the concentration of active
particles increases with ζ . Although active particles swim upward
continuously, the concentration at the free surface cannot increase in-
definitely due to the diffusive effects by the active particles and the
wetland flow. For the case of negative ψ0, which represents the settling
of active particles, the concentration decreases with the increasing ζ .
For the limiting case of =ψ 00 , Eq. (19) reduces to =ζΩ( ) 1, which
implies that the concentration of non-motile particles eventually reach
uniform distribution in the vertical direction.

5. Stable distribution of active particles in the strong vortical flow

For the case of strong vortical flow, ω does not satisfy the condition
of ≪ωB| | 1, and the effect of horizontal vorticity on the vertical
swimming velocity cannot be neglected. In general, the vertical swim-
ming velocity varies with ζ for the strong vortical flow, and the definite
problem described by Eq. (5) reduces to
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In contrast to the concentration distribution of active particles in the
weak vortical flow in which the vertical swimming influences the
concentration distribution only by the vertical variation of cells’ con-

centration, an additional term (source term) Ω ψ
ζ

d
d

V
r

appears for the
strong vortical flow due to the variation of vertical swimming velocity.

Solving Eq. (16) gives

∫ ∫
∫
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c Peψ ζ ζ c
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Ω( )

exp( d )d
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V
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V
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1 1
0

1
0

2
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where c1 and c2 are the undetermined constants related to the con-
centration boundary conditions at the free surface and bed bottom.

Substituting the concentration boundary conditions in Eq. (16) into

Fig. 2. Variation of ωr with ζ : (a) =ω 1.00 , and (b) =α 1.0.
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Eq. (17) yields

∫= = −( )c c Peψ ζ0, exp dV
r

1 2 1

0

(18)

Therefore, the concentration distribution of active particles in the
strong vortical flow can be expressed as

∫= ⎛
⎝

⎞
⎠

ζ Peψ ζΩ( ) exp d
ζ

V
r

0 (19)

which means that the concentration of active particles at ζ is in-
dependent of swimming in the region above ζ .

To illustrate the effects of Pe α, , and ω0 on the concentration dis-
tribution of active particles, Chlamydomonas reinhardtii has been chosen
in the present work. The swimming velocity of Chlamydomonas re-
inhardtii can be expressed, in the present notation, as (Liu, 2018)

=
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where = × = ×− −a a4.700 10 , 9.800 100
2

1
1, = − ×a 2.8072

= ×− −a10 , 2.577 106
3

6, = − × = ×− −a a8.936 10 , 9.255 104
1

5
1, = −a6

=b1.829, 4.0890 , and = ×b 5.918 101
1.

In general, the size of a gyrotactic micro-organism is much less than
that of stem spacing in a typical free-surface wetland. The mean dia-
meter of most gyrotactic mirco-organisms lies in the range of
1μm–200μm, while, in general, the size of the stem spacing lies on the
order of 1 cm and 10 cm for the free-surface wetland. Therefore, the
expression of swimming velocity, Eq. (20), for micro-organisms in free
space can be adopted. However, it may be not a reasonable choice for
porous media with the size of pores comparable to the size of a micro-

organism.
For the case of >ω br 1, the vertical swimming velocity tends to

approach constant zero. Similar results have been reported for
Heterosigma akashiwo in a three-dimensional vorticity field (Chen et al.,
2018). The reason is that the strong horizontal vorticity causes micro-
organisms to tumble. Some important ecological phenomena (for ex-
ample, formation of thin phytoplankton layer in oceans) can be trig-
gered by the strong horizontal vorticity (Durham et al., 2009).

Fig. 3 presents the variation of Ω with ζ for various α ω, 0 and Pe. Ω
increases with the increase of α near the free surface, while it decreases
with the increasing α near the bed bottom, as shown in Fig. 3(a). The
strong ambient vorticity results in a small concentration, as shown in
Fig. 3(b), since the strong vorticity weakens the vertical swimming
velocity of active particles. Ω increases with the increase of Pe, as
shown in Fig. 3(c), because the large Pe represents a strong effective
vertical diffusion for a given swimming velocity.

6. Time scale for active particles to reach the asymptotic stable
distribution

For the time evolution of active particles during the initial stage, Ω
varies with the vertical position ζ and time τ . Here, the finite difference
method is employed to compute the concentration distribution.

Fig. 4 presents the variation of Ω with τ for =ζ 0.5: (a) Pe=1.0 and
ω0=1.0, (b) α=1.0 and Pe=1.0, and (c) =α 1.0 and =ω 1.00 . It is
shown that the concentration of active particles gradually increases to
reach a stable status under the combined action of vertical swimming,
the translational diffusion by the active particles, as well as the effective
mass dispersion by the wetland flow, which is similar to the asymptotic

Fig. 3. Variation of Ω with ζ : (a) Pe=1.0 and =ω 1.00 , (b) =α 1.0 and Pe=1.0, and (c) =ω 1.00 and =α 1.0.
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characteristics of concentration transport of passive particles in the
free-surface wetland flow (Chen et al., 2010; Zeng and Chen, 2011).

The time scale t0 (s) for the concentration distribution to reach the
stable status is mainly influenced by Pe. t0 increases with the increase of
Pe, while it decreases with the increase of ω0. The reason is that the
large Pe implies the strong vertical swimming or the weak vertical
diffusion. t0 is not sensitive to the variation of α for the given para-
meters Pe and B.

7. Conclusions

With essential implications to ecological risk assessments and re-
storation associated with wetlands, a typical case of active particles
transport in the free-surface wetland flow is concretely formulated by
extending the basic equation of concentration transport adopted for
passive particles in wetland flows.

It is found that the vorticity for the free-surface wetland flow de-
pends on two dimensionless parameters, α and ω0. The large α can
enhance the vorticity near the free water surface, while it weakens the
vorticity near the bed bottom. The vorticity always increases with the
increase of ω0. For the large ω0, the gyrotactic micro-organisms prob-
ably tumble unsteadily.

The solution of concentration distribution of active particles is de-
rived rigorously for the free-surface wetland flow with weak vorticity.
Results show that the concentration of active particle is subject to an
exponential distribution. The upward swimming results in the special
distribution pattern of particles with high concentration at the free
surface and low concentration at the bed bottom. For the limiting case
of =ψ 00 , the active particles distribute uniformly through the whole
depth, due to the total diffusion by the wetland flow and the active

particles. The concentration distribution of passive particles, settling
with a constant speed, can be included as a special case of negative ψ0.

The analytical solution of concentration distribution is also obtained
for long time evolution of active particles in the free-surface wetland
flow with the strong vorticity. Results show that the concentration
distribution of active particles can be expressed in the form of

∫ Peψ ζexp( d )
ζ

V
r

0 , which, in general, is not subject to the exponential
distribution of ζ as in the weak vortical flow. The vertical concentration
depends on three dimensionless parameters Pe α, and ω0. The large Pe
and small ω0 can enhance the concentration of active particles through
the whole water depth. However, the enhancement of concentration
due to the increase of α only occurs near the free surface, which is
consistent with the effect of α on the vorticity distribution. Numerical
results show that the time scale, t0, for active particles to reach the
stable distribution mainly depends on Pe. t0 increases with the increase
of Pe.

The analytical solution presented in this work provides one poten-
tial way to estimate the concentration distribution of gyrotactic micro-
organisms in the free-surface wetland flow, which may be useful and
meaningful in the qualitative ecological risk assessments associated
with harmful algal blooms. However, the analytical solution of vertical
distribution of active particles presented in this work is based on an
idealized case in which some simplifications have been made for the
flow and micro-organisms. For example, the gyrotactic micro-organisms
considered here are the spherical micro-organisms, and the wetland
flow considered here is the two-dimensional steady flow. Further work,
associated with practical flow conditions, biological characteristics,
light, temperature and nutrient levels, should be performed to predict
the harmful algal blooms in a realistic wetland flow.

Fig. 4. Variation of Ω with τ for =ζ 0.5: (a)Pe=1.0 and =ω 1.00 , (b) =α 1.0 and Pe=1.0, and (c) =ω 1.00 and =α 1.0.
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